Volume 2,Issue 1
线性秘密共享中的自对偶结构
线性秘密共享方案(LSSS)是现代密码学中支撑安全多方计算与密码协议的关键基础。本文旨在系统性地构建一个基于线性码的LSSS 理论框架。首先,形式化线性秘密共享方案,阐述了份额生成与秘密重构的算法流程。其次,阐明了线性码的理论基础,明确了生成矩阵与校验矩阵的核心作用。本文的贡献在于探讨了自对偶码的数学性质,并通过一个具体的二元域实例加以验证。自对偶码因其内在的对称性和优美的结构,为构建高效安全的线性秘密共享方案提供了理论工具,在信息安全及相关领域中具有重要的应用价值。
[1]Gharahi M ,Khazaei S .Optimal linear secret sharing schemes for graph access structures on six participants[J].Theoretical Computer Science,2019,7711-8.DOI:10.1016/j.tcs.2018.11.007.
[2]Jafari A ,Khazaei S .On Abelian Secret Sharing: duality and separation.[J].IACR Cryptology ePrint Archive,2019,2019575.
[3]Gharahi M ,Dehkordi H M .The complexity of the graph access structures on six participants[J].Designs, Codes and Cryptography,2013,67(2):169-173.DOI:10.1007/s10623-011-9592-z.
[4]Kaboli R , Khazaei S , Parviz M .On Ideal and Weakly-Ideal Access Structures[J].IACR Cryptol. ePrint Arch. 2020, 2020:483.DOI:10.3934/AMC.2021017.
[5]Máté G ,Péter L .On the information ratio of graphs without high-degree neighbors[J].Discrete Applied Mathematics,2021,30455-62.DOI:10.1016/J.DAM.2021.07.011.
[6]Jackson W A , Martin K M .Geometric secret sharing schemes and their duals[J].Designs Codes & Cryptography, 1994, 4(1):83-95.DOI:10.1007/BF01388562.
[7]Padró C ,Vázquez L ,Yang A .Finding lower bounds on the complexity of secret sharing schemes by linear programming[J].Discrete Applied Mathematics,2013,161(7-8):1072-1084.DOI:10.1016/j.dam.2012.10.020.
[8]Padró C .Lecture Notes in Secret Sharing.[J].IACR Cryptology ePrint Archive,2012,2012674.
[9]Farras O ,Kaced T ,Martin S , et al.Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing[J].IEEE Transactions on Information Theory,2020,PP(99):1-1.DOI:10.1109/tit.2020.3005706.
[10]Gharahi M ,Khazaei S .Reduced access structures with four minimal qualified subsets on six participants.[J].Advances in Mathematics of Communications,2018,12(1):199-214.DOI:10.3934/AMC.2018014.
[11]Csirmaz L .Secret sharing and duality.[J].IACR Cryptology ePrint Archive,2019,20191197.
[12]Jafari A , Khazaei S .Partial Secret Sharing Schemes[J].IEEE Transactions on Information Theory, 2023, 69(8):5364-5385.DOI:10.1109/TIT.2023.3265093.
[13]Martí-Farré J ,Padró C .On Secret Sharing Schemes, Matroids and Polymatroids.[J].IACR Cryptology ePrint Archive,2006,200677.
[14]Xing C , Yuan C .Evolving Secret Sharing Schemes Based on Polynomial Evaluations and Algebraic Geometry Codes.[J].IEEE Transactions on Information Theory, PP[2025-12-10].DOI:10.1109/TIT.2024.3379278.
[15]Abram D, Roy L, Scholl P. Succinct homomorphic secret sharing.[J].In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer Nature Switzerland, 2024: 301-330.